
A density explanation of valence asymmetries
in recognition memory

Hans Alves & Christian Unkelbach & Juliane Burghardt &
Alex S. Koch & Tobias Krüger & Vaughn D. Becker

Published online: 13 March 2015
# Psychonomic Society, Inc. 2015

Abstract The density hypothesis states that positive informa-
tion is more similar than negative information, resulting in
higher density of positive information in mental representa-
tions. The present research applies the density hypothesis to
recognition memory to explain apparent valence asymmetries
in recognition memory, namely, a recognition advantage for
negative information. Previous research explained this nega-
tivity advantage on the basis of valence-induced affect. We
predicted that positive information’s higher density impairs
recognition performance. Two old–new word recognition ex-
periments tested whether differential density between positive
and negative stimuli creates a negativity advantage in recog-
nition memory, over and above valence-induced affect. In
Experiment 1, participants better discriminated negative word
stimuli (i.e., less false alarms) and showed a response bias
towards positive words. Regression analyses showed the
asymmetry to be function of density and not of valence.
Experiment 2 varied stimulus density orthogonal to valence.
Again, discriminability and response bias were a function of
density and not of valence. We conclude that the higher den-
sity of positive information causes an apparent valence asym-
metry in recognition memory.
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Distinguishing between positive and negative information is
essential for humans to navigate complex environments
(Lewin, 1935); unsurprisingly, this distinction fundamentally
influences human cognition as well. Previous research identi-
fied numerous asymmetries in the perception, processing,
elaboration, storage, and retrieval of positive and negative
information. These valence asymmetries are commonly ex-
plained by the affective potential of evaluative information
(see Baumeister, Bratslavsky, Finkenauer, & Vohs, 2001, for
a review). Accordingly, the affective reaction of the organism
alters cognitive information processing. A prominent example
is the notion that negative information triggers deeper and
more accommodative processing styles (Bless & Fiedler,
2006; Taylor, 1991).

A different perspective on valence asymmetries is provided
by the density hypothesis (Unkelbach, Fiedler, Bayer,
Stegmüller, & Danner, 2008), which claims that positive and
negative information differ ecologically regarding their diver-
sity. That is, besides the Bhot^ potential of evaluative informa-
tion to influence emotions, motivations, and behavior (e.g.,
such as approach and avoidance), it is assumed that there are
systematic Bcold^ differences between positive and negative
information. These differences should not depend on the in-
formation’s energetic potential, for example, due to its self- or
survival relevance. Additionally, these differences exist inde-
pendent of the emotional, motivational, or behavioral states of
the organism (e.g., Lepper, 1994). Specifically, Unkelbach
and colleagues suggested that there is a smaller diversity and
therefore a higher similarity among positive information com-
pared to negative information, leading to higher Bdensity^ of
positive information in mental representations. They argued
that this ecological difference might explain observed valence
asymmetries in processing of evaluative information. For ex-
ample, the authors showed that positive information is proc-
essed faster than negative information; not because of differ-
ential affective reactions, but because of the differential
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density of positive and negative information (Unkelbach et al.,
2008a; Experiment 2). Here, we test whether the differential
density of evaluative information influences recognition
performance.

There is substantial evidence that stimulus similarity influ-
ences recognition memory. For example, perceptual recogni-
tion research shows that recognition is less accurate for pro-
totypical stimuli (e.g., Busey & Tunnicliff, 1999); it is difficult
to distinguish old from new stimuli when stimuli are highly
similar. Specifically, similarity causes false recognition of
stimuli that were not presented during a study phase, most
prominently evident in the Deese–Roediger–McDermott
(DRM) paradigm (Roediger & McDermott, 1995), for exam-
ple when people falsely recall the word sleep after studying
the words bed, rest, and awake. Given that positive informa-
tion is overall more similar to other positive information, rec-
ognition of positive information should be less accurate than
recognition of negative information. Positive information
should provoke more false alarms and thus weaken recogni-
tion performance. In terms of signal detection analysis
(Stanislaw & Todorov, 1999), this translates to better discrim-
inability for negative stimuli and a stronger response bias for
positive stimuli.

A considerable amount of empirical evidence for such dif-
ferential valence effects in recognition is already available
(Inaba, Nomura, & Ohira, 2005; Ohira, Winton & Oyama,
1998; Ortony, Turner & Antos, 1983; Robinson-Riegler &
Winton, 1996). However, these effects have been traced back
to the affective reaction of the organism in response to
evaluatively and affectively connotated stimuli. Here, we will
test whether positive and negative information’s differential
density accounts for the observed recognition asymmetry,
over and above evaluative and affective influences. In the
following, we provide an outline of the density hypothesis,
explain how density and memory performance should be re-
lated, and compare predictions from density and affect-based
explanations of recognition asymmetries.

The density hypothesis

The density hypothesis proposes that positivity comes with
decreased diversity (Unkelbach, 2012; Unkelbach et al.,
2008b). Differential diversity of positivity and negativity is
evident in many different domains. Most generally, positive
states typically constitute the norm while negative states con-
stitute some kind of deviation from that norm (Clark & Clark,
1977). There is usually one normal and thus positive state
which is characterized by the absence of many abnormal and
thus negative states (e.g., being healthy means not having any
of many health-related abnormalities). As a result, negative
states display a larger diversity than positive states. This prin-
ciple reaches into language as there is a larger vocabulary for

negative states than for positive states. This was shown for
English verbs (Semin & Fiedler, 1992), German personality
traits (Leising, Ostrovski, & Borkenau, 2012), as well as for
English and Spanish emotion words (Schrauf & Sanchez,
2004). Another example is facial attractiveness; attractive
faces are alike, while there are many different ways to be
unattractive (Potter, Corneille, Ruys, & Rhodes, 2007). The
same principle extents to person perception in general as lik-
able, or Bpositive^ persons are perceived as more similar to
one another compared to disliked persons (Leising, Ostrovski,
& Zimmermann, 2013; Alves, Koch, & Unkelbach, under
review). And finally, the effect is also present in emotional
experiences as there is one basic positive emotion (joy), but
multiple distinct negative emotions (anger, disgust, fear, sad-
ness; Ekman & Friesen, 1971; see also Ortony & Turner,
1990).

Based on lower diversity, positive information displays
higher density in spatial models of mental representations than
negative information. The original measure of the density con-
struct consisted of pairwise similarity ratings that were ana-
lyzed using a multidimensional scaling procedure (MDS;
Krumhansl, 1978). Stimulus density was defined as the aver-
age Euclidean distance of a stimulus to all other stimuli of the
same valence in a given stimulus set (Potter et al., 2007;
Unkelbach et al., 2008b). As of now, we and others have
found this density asymmetry for a variety of different stimu-
lus classes including nouns, trait words, self-generated words,
as well as IAPS pictures using different measures like multi-
dimensional scaling the spatial arrangement method (SPAM;
Goldstone, 1994) and Google co-frequency analysis
(Bruckmüller & Abele, 2013; Koch, Alves, Krüger, &
Unkelbach, 2015; Unkelbach, Guastella, & Forgas, 2008). In
all these studies, participants judged positive stimuli as more
similar to one another than negative stimuli. The density
asymmetry seems to be a general and robust phenomenon of
evaluative information ecologies (see Unkelbach, 2012, for a
discussion).

Similarity as used in the current theoretical framework is
defined by its experimental operationalization as spatial dis-
tance. When doing pairwise comparisons or spatial arrange-
ments of stimuli, it is likely that participants rely on different
components of similarity when making their judgments such
as semantic similarity, feature overlap, associative strength,
and frequency of co-occurrence (Maki & Buchanan 2008).
For example, results from the Google co-frequency analysis
show that positive wordsmore frequently co-occur across web
pages than negative words while this co-occurrence is sub-
stantially correlated to participant’s similarity ratings (r =
.60; Koch et al., 2015, see also Lund & Burgess, 1996). In a
similar vein, people also group positive words into fewer cat-
egories than negative words (Koch et al., 2015). We suggest
that higher perceived similarity, stronger associative relations,
more frequent co-occurrences, and more inclusive

Mem Cogn (2015) 43:896–909 897



categorizations of positive compared to negative information
are all different observable phenomena of the same common
principle. In the present work we refer to this principle as
density in a spatial model of representation (e.g., Goldstone,
1994; Nosofsky, 1992; Shepard, 1987).

We believe the differential density of positive and negative
information is ecological, not affective in nature. Affective
reactions are located within the organism – that is, organisms
react to stimuli depending on their individual state, their cur-
rent motivational situation, or their learning history.
Ecological effects are located in the environment and depend
on its contextual structure. That is, an ecological property
changes with regard to the environment, while an affective
property changes with regard to the organism. Applied to
evaluative information and the construct of density, the same
stimulus might be similar to other stimuli in one environment,
but dissimilar to other stimuli in another environment.
Consequently, the differential effects of stimulus valence
might shift depending on the structure of the information en-
vironment. However, as the data described above suggests,
across most environments, positive stimuli seem to be more
similar to one another than negative stimuli.

The proposition that information valence is ecologically
confounded with information density has a number of impli-
cations for information processing. Stimulus density or simi-
larity is a fundamental determent of cognitive processes rang-
ing from attention (Nosofsky, 1986; Ward, Duncan, &
Shapiro, 1997), visual search (Phillips, Takeda, & Kumada,
2006), storage (Mate & Baqués, 2009), retrieval (Glanzer,
Knoppenaal, Nelson, 1972; Lewandowsky & Farrell, 2008;
Nosofsky, 1988, 1991), and processing speed (Unkelbach
et al., 2010) to evaluative judgments (Montoya, Horton, &
Kirchner, 2008). The differential density might therefore ac-
count for a number of observed valence asymmetries in infor-
mation processing (Unkelbach, 2012). The present work tests
the explanatory power of the density hypothesis in the domain
of recognition memory.

Density and memory performance

Increasing the similarity or relatedness among stimuli in-
creases false alarm rates. This effect appears for stimuli such
as alphanumeric characters (Flagg, 1976; Reitman & Bower,
1973), geometric shapes (Medin & Schaffer, 1978; Nosofsky,
1991; Nosofsky, Clark, & Shin, 1989), pictures (Koutstaal &
Schacter, 1997; Strack & Bless 1994), faces (Busey &
Tunnicliff, 1999; Vokey & Read, 1992), words (Brainerd,
Reyna, Mojardin, 1999; Dyne, Humphreys, Bain, & Pike,
1990; Montefinese, Zannino, & Ambrosini, 2014; Postman,
1951; Roediger & McDermott, 1995), and sentences (Cantor
& Engle, 1993; Holmes, Waters, & Rajaram, 1998).

One explanation for this similarity effect is provided by
global activation theories of recognition memory. They as-
sume that stimulus classifications as old or new depend on
the signal strength or the echo that stimuli evoke from mem-
ory (Gillund & Shiffrin, 1984; Hintzman, 1988; Wixted,
2007). If the echo exceeds a recognition threshold, partici-
pants provide an Bold^ response. The echo strength of a given
stimulus is a function of the summed similarity with presented
(Bold^) stimuli stored in memory (Fiedler, 1996; Nosofsky,
1988, 1991). The left part of Fig. 1 illustrates this principle
in a simple subsymbolic memory network. The activation
vectors represent information stored in memory and new in-
formation (e.g., new positive vs. new negative words); stimuli
that are more similar to other stimuli produce stronger echos,
and therefore, high similarity produces false alarms. Note
again that similarity can have different components
(semantic similarity, associative strength, co-occurrence) that
might all increase echo strength.

As we assume that positive stimuli are more similar to one
another than negative stimuli, the likelihood of falsely
responding Bold^ to a new stimulus should be higher for pos-
itive stimuli. The right part of Fig. 1 illustrates the same prin-
ciple for a symbolic network. However, this effect should arise
independent of the specific memory architecture (e.g., sym-
bolic vs. subsymbolic networks), as long as it allows to model
similarity. The association between similarity and false alarms
also follows from dual process models of recognition which
assume false alarms to depend on the familiarity that a stimu-
lus evokes (Mandler, 1980; Yonelinas, 1994). Similarly to the
echo strength concept, familiarity is supposed to increases
with increasing similarity among stimuli (Verde, 2004).

While similarity causes false recognition, it typically does
not lead to an equal increase in hits which is why recognition
performance is impaired for highly similar stimuli (Anderson
& Reder, 1999; Cantor & Engle, 1993; Dyne et al. 1990;
Shiffrin, Huber, & Marinelli, 1995; Verde, 2004). Using a
global activation model, Zaki and Nosofsky (2001) predicted
and found that a larger proportion of new stimuli are pushed
past the response criterion than old stimuli because partici-
pants usually correctly classify the majority of stimuli.1

Another explanation is provided by dual process models as
they assume similarity affects familiarity and recollection in
opposite ways (Mandler, 1980; Yonelinas, 1994). Similarity
supposedly increases familiarity and thus false-alarm rates,
but similarity makes the recollection of a specific stimulus
more difficult (Gillund & Shiffrin, 1984; Wixted, Ghadisha,
&Vera, 1997). As the correct recognition of old stimuli (Bhit^)
is a function of both, familiarity and recollection, similarity
always produces a stronger increase in false alarms than in hits

1 An additional assumption that has to be made for this asymmetry to
occur is that participants do not respond Bnew^ more often than Bold^
(response criterion<= 1).
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(Joordens & Hockley, 2000). Assuming that high similarity
among stimuli increases false alarms without a corresponding
increase in hits, we expected recognition advantages for neg-
ative stimuli over positive stimuli.

Affect or density?

Several studies already reported a similar recognition advan-
tage for negative information over positive information. In a
study by Ortony and colleagues (1983), false alarm rates for
positive sentences were larger than for negative sentences,
while hit rates were unaffected by valence. Using Jacoby’s
(1991) process dissociation paradigm, Robinson-Riegler and
Winton (1996) reported that positive words were more likely
to be falsely recognized under an exclusion instruction than
negative words. Ohira and colleagues (1998) replicated this
pattern using Japanese word stimuli. Inaba and colleagues
(2005) also reported a recognition advantage for nega-
tive words as they found larger false alarm rates for
positive words and equally large hit rates for positive
and negative words.

All these studies provide an affective explanation for the
recognition advantage of negative information. Accordingly,
valenced stimuli elicit affective reactions within participants,
which influence encoding. Specifically, Bnegative events ap-
pear to elicit more physiological, affective, cognitive, and be-
havioral activity and prompt more cognitive analysis than
neutral or positive events^ (Taylor, 1991, p. 67). As deeper
encoding benefits memory performances (e.g., Craik &
Tulving, 1975), negative information is expected to show
the described recognition advantage.

A related idea suggests that negative mood/affect leads to
accommodative, bottom-up processing that is sensitive to the
details of the external world, while positive mood/affect leads

to assimilative, top-down processing which relies on
preformed internal schemas and heuristics (Bless & Fiedler,
2006). A number of findings suggest that an accommodative
processing style benefits memory accuracy while an assimila-
tive style produces false memories (Fiedler, Asbeck, &
Nickel, 1991; Forgas, Goldenberg, & Unkelbach, 2009).

Besides processing depth and processing style, Monin
(2003) postulated the Bwarm-glow^ heuristic, claiming that
people mistake positive affect for familiarity. The author
showed that participants perceived attractive faces as more
familiar (see also Garcia-Marques, Mackie, Claypool, &
Garcia-Marques, 2004). Using an old–new recognition task,
Monin (2003, Study 3) also found that participants erroneous-
ly recognized positive words more often than negative words.
Such misperceptions of positive affect as familiarity could
thus increase familiarity for positive stimuli and thereby cause
false recognition.

The processing depth explanation, the processing style ex-
planation, and the Bwarm-glow^ heuristic all suggest the rec-
ognition asymmetry is caused by Bhot^ valence–based affect,
that is, the energizing potential of evaluative information. In
contrast, as delineated above, we predict the asymmetry to be
based on Bcold^ stimulus density, a property that, albeit eco-
logically confounded with valence, does not require affect to
exert an influence. Again, density is a property of a stimulus
within its information ecology and is thus not fixed
(Unkelbach, 2012). For example, the usually very distinct
stimulus Bbombs^ has high density in the context of war and
weapons, and accordingly will produce high rates of false
alarms. But in the context of spiders and snakes, the stimulus
Bbombs^ has low density and will produce few false alarms.
While affect-based explanations predict general differences
between positive and negative information, the present ac-
count allows for a priori predictable alternative outcomes de-
pending on the respective information ecology.

New NewOld1 Old2 Old1 Old2

Posi�ve Words Nega�ve Words

 .80                         Echo Strength                       .50 Strong Echo Weak Echo

Old

New

Summer

Birthday

Sunshine

Friend

Party War

Bombs

Virus

Divorce

Cockroach

Posi�ve Words Nega�ve Words

Fig. 1 The left part illustrates a subsymbolic memory model along with
the memory echo strength (simple matching coefficient) for a new
positive and a new negative word elicited by old positive and old
negative words. Assuming positive words are more similar to one

another than the negative words, the resulting echo is stronger for the
new positive word than for the new negative word and so is the
likelihood for a false alarm. The right part illustrates the same principle
in a symbolic memory model
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Overview and predictions for the following experiments

We conducted two old-new recognition experiments to disen-
tangle density effects in recognition from affective influences.
Based on the density hypothesis, we predicted that false alarm
rates are higher for positive words than for negative words,
while the same should not be true for hit rates. Consequently,
discriminability should be higher for negative words while
positive words should elicit a stronger response bias.
Crucially, we predicted this effect to depend on the similarity
among the word stimuli (density) and not on the valence of the
words as suggested by affect based-explanations. We tested
these hypotheses using the same sample of word stimuli that
were used byUnkelbach et al. (2008a) in their empirical test of
the density hypothesis. It contains the 20most positive and the
20 most negative words from a set of 92 words that are fre-
quently used in experimental social psychology (Bargh,
Chaiken, Govender, & Pratto, 1992; Fazio, Sanbonmatsu,
Powell, & Kardes, 1986; Klauer & Musch, 1999; see
Appendix). Using this stimulus sample ensures that stimuli
have strong valence, and has the advantage that density pa-
rameters for the individual words, that is, their average simi-
larity to the other stimuli in the set, are already available. In
addition, it represents a standard and often used set of
evaluative stimuli.

Experiment 1

Experiment 1 employed an old–new recognition task. First,
we aimed at replicating a recognition advantage for negative
words on the participant level. Next, regression analysis on the
item level aimed to identify the underlying processes, by
regressing stimuli’s false alarm and hit rates on their valence
and density. Additionally, the regression included word fre-
quency, which has been shown to strongly influence recogni-
tion performance as well (Arndt & Reder, 2002; Glanzer &
Adams, 1990).

Method

Participants and design One hundred eighty-three students
(106 women and 77 men) of the University of Cologne par-
ticipated for 3€ or course credit. All participants were native
German speakers. Stimulus valence was the only experimen-
tal factor and was manipulated within participants.

Stimulus materials As described, the 20 most positive and the
20 most negative words based on German norm ratings by
Klauer and Musch (1999), from a set of 92 frequently used
attitude objects (Fazio et al., 1986), served as stimuli.

Procedure Participants arrived in the laboratory and were
seated in front of a computer. After completing a consent
form, the experimenter started a Visual Basic program that
presented instructions, stimuli, and recorded the dependent
variables. The program instructed participants to pay close
attention while they would see several word series. The ex-
periment had three phases, separated by two filler tasks. The
first phase presented all 40 words in randomized order and
was administered to familiarize participants with the stimuli
and to make the subsequent recognition task more difficult.2

Each stimulus appeared for 1,000 ms followed by a blank
screen that appeared for 1,200 ms. Participants then worked
on a filler task for about 8 minutes. The subsequent learning
phase instructed participants to pay close attention while they
would be presented with 20 out of the 40 word stimuli from
the first phase. The program then presented 10 positive and 10
negative randomly selected words from the original 40 items.
After a second filler task, which took about 5 minutes, the test
phase presented all 40 stimuli and participants decided for
each word, whether it was present during the learning phase
or not. Participants indicated their decision by pressing either
the BL^ key (BThe word was presented in the second phase^)
or the BA^ key (BThe word was NOT presented in the second
phase^). Each phase of the experiment presented stimuli in a
newly randomized order for each participant. Finally, partici-
pants were thanked, paid, and informed about the purpose of
the experiment.

Results

Analysis across participants Prior to inferential analysis, we
removed data from seven participants because their memory
performance did not exceed chance. For the remaining partic-
ipants, we calculated participants’ false-alarm and hit rates
separately for positive and negative stimuli. Figure 2 illus-
trates that the mean false alarm rates were significantly higher
for positive stimuli than for negative stimuli, (Mpos = 0.29,
SDpo s = 0.19 vs. Mneg = 0.23, SDneg = 0.17), t(175) = 3.68, p
< .001, d = 0.33, while the hit rates for the positive words were
only slightly higher than for the negative words (Mpos = 0.76,
SDpos = 0.16 vs. Mneg = 0.75, SDneg = 0.16), t(175) = 1.18,
p = .241.

Based on the hit- and false alarm rates, we calculated par-
ticipants’ signal detection parameters d’ and C for the positive
and negative words (Stanislaw & Todorov, 1999). Higher d’
values indicate better discrimination ability, while d’ = 0 indi-
cates inability to distinguish between old and new stimuli. The
response bias parameter C indicates the tendency to respond

2 A pretest showed that old–new discriminations for the 40 word stimuli
from Unkelbach et al. (2008a) produced ceiling effects (very few false
alarms). We therefore familiarized participants with all 40 stimuli in the
beginning to make the subsequent recognition task more difficult and to
increase false-alarm rates.
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Bnew^ or Bold.^ C values of 0 indicate no bias; C values
higher than 0 indicate a tendency to respond Bnew,^ while C
values lower than 0 indicate a tendency to respond Bold.^ The
data confirmed our hypothesis as d’was larger for the negative
words (M = 1.59, SD = 0.81) than for the positive words
(M = 1.46, SD = 0.80), t(175) = 2.10, p = .038, d = 0.17. In
addition, C was larger for the negative words (M = 0.04,
SD = 0.39) than for the positive words (M = -0.09, SD = 0.42),
t(175) = 3.32, p = .001, d = 0.33. As predicted, participants’
discrimination ability was higher for negative words, while par-
ticipant’s tendency to respond Bold^was stronger for the positive
than for the negative words.

Analyses across stimuli Having established the basic pattern,
we tested our core hypothesis that stimulus density influences
recognition performance independent of and beyond valence.
We therefore calculated hit and false alarm rates separately for
each stimulus.3 In addition, we obtained density indices for
each word from Unkelbach et al. (2008a). The density index
designates the mean Euclidean distance of a word to all words
of the same valence in a multidimensional space; thus, it is a
metric of similarity. The multidimensional space is calculated
based on pairwise similarity ratings using a multidimensional
scaling procedure. To obtain a continuous measure for word
valence, eight research assistants rated the words’ valences on
scales ranging from -5 (negative) to +5 (positive). In addition,
we obtained word frequency estimates from Klauer and
Musch (1999).

Two regression analyses tested the influences of density
and valence on false alarms and hits. A first model predicted
false alarms from word valence and frequency and found an
influence of both predictors. More frequent words had a higher
chance of being falsely recognized (β = .36, p = .020), a well-
known phenomenon (e.g., Glanzer, Adams, Iverson, & Kim,
1993). In addition, positive words elicited more false alarms

than negative words (β = .29, p = .055), even though this effect
did not reach conventional levels of significance. We attribute
this to a lack of power, as the item-level analysis had only 39
degrees of freedom. A second regression model added density
as a predictor. Table 1 shows that when density was included, it
was the strongest and only significant predictor of false alarms.
Specifically, the partial correlation between valence and false
alarms dropped from r = .31, p = .055 to r = .05, p = .772.
Thus, density accounted for the effect of a word’s valence on
its probability to be falsely recognized.

Next, we conducted a similar regression procedure with hit
rates as the criterion. Table 2 shows that neither valence nor
density predicted hit rates. Frequency showed a marginally
significant influence on hit rates, indicating that infrequent
stimuli had a higher chance of being correctly recognized.
This reflects typical word frequency effects in recognition
(see Murdock, 2003, for a review).

Discussion

Experiment 1 replicated the standard valence asymmetry in
recognition performance, that is, higher false alarm rates
among positive stimuli and equal hit rates among positive
and negative stimuli. As a result, discriminability was higher
for negative stimuli and response bias was stronger for posi-
tive stimuli. Regression analyses on the item level explored
the cause of this asymmetry. As expected, stimulus density
was the best predictor of false alarms and fully accounted for
the effect of valence on false alarms. Thus, Experiment 1
supported the idea that higher similarity among positive
stimuli, as indexed by stimulus density, causes false recogni-
tion and thereby produces an apparent valence asymmetry.

Experiment 1 utilized the Bnatural^ covariation of va-
lence and density (i.e., positive information clusters
more densely). Experiment 2 provides a stronger test
and varied density and valence orthogonally between a
Bnatural^ and a Breversed^ condition. If the density
explanation holds true and the recognition asymmetry
is not a function of valence per se, it should be possible
to create ecologies in which negative stimuli produce
more false alarms than positive stimuli.
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Fig. 2 False alarm and hit probabilities among the positive and negative
word stimuli. The error bars represent standard errors of the means

3 As the calculation of d’ and C is valid only on the participant level, item
level analysis was conducted on false-alarm and hit rated only.

Table 1 Results of a multiple regression analysis predicting a word’s
probability to be falsely classified as Bold^ (false alarm rate) from
valence, density, and frequency across the 40 word stimuli

Predictor β t p Partial r2 Simple correlation

Density -.469 -2.82 .008 -.426 -.554

Valence .046 0.29 .772 .048 .284

Frequency .222 1.56 .128 .252 .351
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Experiment 2

Experiment 2’s Bnatural^ condition featured positive words
that were similar and negative words that were dissimilar.
The Breversed^ condition featured positive words that were
dissimilar and negative words that were similar, while mean
stimulus valence was constant across conditions (Mnatural = 4.79,
SD = 3.44 vs.Mreversed = 4.75, SD = 3.69), t(30) = 0.04, p = .97.
Figure 3 presents the stimuli plotted in a two-dimensional
similarity space based on similarity ratings from Unkelbach
et al. (2008a). This selection directly tested the affect and density
explanations for recognition asymmetries. Affect-based
explanations predict recognition to be a function of valence,
which statistically translates into a main effect in the present
design. The density-based explanation predicts recognition to
be a function of stimulus similarity, which statistically translates
into an interaction effect between valence and condition.

Method

Participants and design Seventy-four students (58 women, 16
men) of the University of Cologne participated for 3€ or
course credit. All participants were native German speakers.
Experiment 2 did not hinge on correlational variation of the
variables but manipulated them via preselection. Therefore,
the necessary participant sample was smaller than in
Experiment 1. Participants were randomly assigned to the
Bnatural^ and Breversed^ conditions; in the former condition,

positive stimuli were more similar to one another than nega-
tive stimuli, while in the latter condition, negative stimuli were
more similar to one another than positive stimuli.

Stimulus materials and procedure We created four stimulus
subsets which realized the orthogonal combinations of va-
lence and similarity (positive/similar; positive/dissimilar; neg-
ative/similar; negative/dissimilar). Each set contained eight
stimuli from the 40 word stimuli used in Experiment 1. We
selected stimuli based on density indices and additional visual
inspection of the multidimensional scaling solution. Visual
inspection was necessary as two stimuli might be very dissim-
ilar to the whole set (resulting in low density) but very similar
to each other. Visual inspection ensured that in such cases,
only one of them was included in the subset. Using similarity
ratings from Unkelbach et al. (2008a), we calculated new
density indices (i.e., average Euclidean distances) for each
word in each subset with lower values representing higher
density. The respective means confirmed that words in the
positive/similar (M = 3.89, SD = 0.53) and negative/similar
(M = 3.89, SD = 0.92) subsets were more similar than those in
the positive/dissimilar (M = 7.34, SD = 0.81) and negative/
dissimilar (M = 8.88, SD = 1.01) subsets, t(30) = 12.09,
p < .001. The dissimilar sets did not fully dissolve the con-
found between valence and density, as the positive/dissimilar
words were still more similar compared to the negative/
dissimilar words, t(14) = 3.36, p = .005. Yet, as Fig. 3 shows,
the experimental density difference within a given condition
was fully established. The four subsets did not differ in word
frequency, F(3,28) = 1.66, p = .198.

We combined the positive/similar and negative/
dissimilar subsets to serve as stimuli in the Bnatural^ con-
dition, while the positive/dissimilar and the negative/
similar subsets served as stimuli in the Breversed^ condi-
tion. Thus, each condition contained 16 word stimuli as
illustrated in Fig. 3. For each participant, the computer
randomly determined four of the eight positive and four
of the eight negative stimuli as Bold^ stimuli and the

Table 2 Results of a multiple regression analysis predicting a word’s
probability to be correctly classified as Bold^ (hit rate) from valence,
density, and frequency across the 40 word stimuli

Predictor β t p Partial r2 Simple correlation

Density -.059 -0.30 .766 -.050 .470

Valence .102 0.54 .592 .090 .137

Frequency -.288 -1.71 .091 -.275 -.274
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Food

Birthday

Strawberry

Gi�

Party

Bombs

Alcoholism

Toothache

Funeral
Divorce

Recession

Cockroach

Taxes

Natural Condi�on

Ki�en

Chocolate

Baby

Pizza

Movies

Gi�

Music

Holiday

War

Bombs

Hate

Funeral

Crime

Death

Hell
Guns

Reversed Condi�on

Fig. 3 Spatial density differences for the 16 stimuli in the natural condition and the 16 stimuli in the reversed condition in a two-dimensional similarity
space
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remaining as Bnew^ stimuli. Except for the stimuli, the
procedure of the recognition task was identical to that of
Experiment 1. That is, the task consisted of three phases
separated by to filler tasks. The first phase presented all
16 word stimuli in order to familiarize participants with
the stimuli. After a first filler task, the subsequent learning
phase presented eight randomly selected words (four pos-
itive and four negative) from the original 16 items. After a
second filer task, the test phase presented all 16 stimuli,
and participants decided for each word whether it was
present during the learning phase or not.

Results

Analysis across participants Prior to inferential analyses, we
removed data from three participants because their memory
performance did not exceed chance. For the remaining partic-
ipants, we calculated false alarm and hit rates separately for
the positive and the negative stimuli. We conducted a 2(con-
dition: natural vs. reversed) × 2(valence: positive vs. negative)
ANOVA with repeated measures on the last factor and
false alarm rates as the dependent variable. The analysis
yielded a main effect of valence: false-alarm rates were higher
for the positive words than for the negative words
(Mpos = 0.28, SDpos = 0.21 vs. Mneg = 0.21, SDneg = 0.21),
F(1, 69) = 5.01, p = .028, η2 = 0.07. However, the predicted
interaction explained a much larger part of variance. As the

upper-left part of Fig. 4 shows, false-alarm rates were higher
for positive words than for negative words in the natural
condition, while the opposite was true in the reversed
condition, F(1, 69) = 25.14, p < .001, η2 = 0.27. Similar to
Experiment 1, hit rates did not differ between experimental
conditions (see the upper-right part of Fig. 4), all Fs < 1, ns.

We then computed participants’ SDT estimates separately
for positive and negative words. First, we conducted a 2(con-
dition: natural vs. reversed) x 2(valence: positive vs. negative)
mixed ANOVAwith repeated measures on the last factor and
d’ as the dependent variable. The only significant effect was
the predicted interaction of condition and valence. As Fig. 4’s
lower-left part illustrates, d’ was larger for negative words
than for positive words in the natural condition, while in the
Breversed^ condition, d’was larger for positive words than for
negative words, F(1, 69) = 17.62, p < .001, η2 = .20.

We conducted the same analyses with C as dependent var-
iable. This analysis yielded a main effect for valence: C was
larger for negative words (M = -0.06, SD = 0.48) than for
positive words (M = -0.21, SD = 0.44), F(1, 69) = 4.68,
p = .034, η2 = .06. However, a much larger part of variance
was explained by the predicted interaction which is illustrated
in Fig. 4’s lower-right part: C was smaller for the positive
words than for the negative words in the natural condition,
while in the reversed condition,Cwas smaller for the negative
words than for the positive words, F(1, 69) = 11.27, p = .001,
η2 = .14.
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Fig. 4 False-alarm rates, hit rates, discriminability, and response bias for
the positive and negative words when positive words are more similar
than negative words (Bnatural^ condition) and when negative words are

more similar than positive words (Breversed^ condition). Larger d’ values
indicate better discriminability. C values lower than 0 indicate a tendency
to respond Bold.^ The error bars represent standard errors of the mean
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Analysis across stimuli Similar to Experiment 1, we tested the
influence of density and valence on the stimulus level.
Therefore, we again calculated hit and false alarm rates sepa-
rately for each stimulus across both conditions. As there were
16 stimuli in each condition, we calculated a total of 32 hit-
and false-alarm rates. Two of the same positive and two of the
same negative stimuli were used in both conditions simulta-
neously (chocolate, gift, funeral, bombs). Thus, these stimuli
appeared twice among the 32 stimuli.While they had the same
valence values in both conditions, their density value varied
due to the differential ecologies. Similar to Experiment 1, we
conducted two regression analyses predicting false alarm rates
and hit rates from valence, density, and frequency across all 32
words. As in Experiment 1, the density index was the only
significant predictor for false alarm rates, while neither va-
lence nor density had a significant influence on hit rates (see
Tables 3 and 4).

Discussion

Experiment 2 supports the proposed influence of density on
recognition memory: With increasing similarity among stim-
uli, false alarm rates increase while hit rates remain mostly
unaffected. Consequently, discriminability decreases and re-
sponse bias increases. Furthermore, by varying density and
valence across two conditions, the influences of the two com-
peting predictors were directly tested against each other. We
created two stimulus ecologies: one included the natural con-
found between valence and density while the other represent-
ed a reversed ecology in which negative words were more
similar to one another than positive words. The natural ecol-
ogy produced higher false alarm rates for positive words,
while the reversed ecology produced higher false alarm rates
for negative words. Consequently, discriminability and re-
sponse bias also changed as a function of the ecology as evi-
dent by the interaction effect of valence and condition. This
pattern directly follows from the density explanation, but
affect-based explanations would predict a main effect of stim-
ulus valence on recognition performance. For example, if the
Bwarm-glow^ of positive words increased familiarity and thus
false alarms, this should also be the case in a reversed ecology.
Indeed, we found a main effect of valence on false alarm rates

and response bias as well; however, this effect was much
smaller than the interaction effect and might be due to the
still-present confound between valence and density in our
stimulus subsets. Item-level analyses confirmed this explana-
tion; across both conditions, the density index predicted false-
alarm rates, but a continuous measure of valence did not.

General discussion

The density hypothesis states that positive information is less
diverse than negative information, resulting in differential
density in mental representations (Unkelbach et al., 2008a).
This differential density may account for apparent valence
asymmetries in the processing of evaluative information
(Unkelbach, 2012). While valence asymmetries are common-
ly explained as Bhot,^ affect-induced processing asymmetries,
the density hypothesis points to a Bcold,^ ecology-related ex-
planation of the same asymmetries.

The present work shows that higher density among positive
stimuli impairs memory accuracy, and thereby creates a rec-
ognition advantage for negative stimuli. Our account thereby
provides an alternative explanation for the recognition advan-
tage of negative information that does not rely on the affective
reaction of the organism (Inaba et al., 2005; Ohira, et al., 1998;
Robinson-Riegler, & Winton, 1996). Two experiments
showed that the density asymmetry creates a recognition ad-
vantage for negative stimuli over and above evaluative and
affective influences.

Experiment 1 found the standard recognition valence
asymmetry for 20 strongly positive and 20 strongly negative
nouns frequently used in research on evaluative information
processing. Similarly to past findings (Inaba et al., 2005;
Ortony at al., 1983), false alarm rates for positive words were
higher than for negative words while hit rates were mostly
unaffected. Regression analyses supported the density expla-
nation, as stimulus density was the best predictor for false
alarm rates and fully accounted for any effects of valence.
Hit rates were unaffected by both density and valence.
Experiment 2 varied density and valence between conditions,
and again, memory performance was a function of density and
not of valence. Results showed that in a reversed ecology, in
which negative stimuli were more similar than positive

Table 3 Results of a multiple regression analysis predicting a word’s
probability to be falsely classified as Bold^ (false-alarm rate) from va-
lence, density, and frequency across the 32 word stimuli

Predictor β t p Partial r2 Simple correlation

Density -.570 -3.56 .001 -.558 -.603

Valence .162 1.07 .293 .199 .209

Frequency .049 0.30 .765 .057 .227

Table 4 Results of a multiple-regression analysis predicting a word’s
probability to be correctly classified as Bold^ (hit rate) from valence,
density, and frequency across the 32 word stimuli

Predictor β t p Partial r2 Simple correlation

Density .049 0.24 .812 .045 .008

Valence .073 0.38 .708 .071 .054

Frequency .096 0.47 .643 .088 .068

904 Mem Cogn (2015) 43:896–909



stimuli, false alarm rates were higher for negative words than
for positive words, and, consequently, discriminability was
higher for positive words and response bias was stronger for
negative words. This pattern is incompatible with a processing
depth, processing style, or a Bwarm-glow^ explanation but
directly follows from the density explanation. Although we
do not claim that these explanations are generally wrong, the
density effect dominated the valence influences, at least within
the present paradigm and stimulus set.

Across both experiments, hit rates were unaffected by den-
sity and valence on the participant as well as on the stimulus
level. While we predicted similarity to exert its influence pre-
dominantly on false alarms and not on hits, the absence of an
association between valence and hits casts further doubt on a
processing depth/style explanation. To our understanding,
deeper and more accommodative encoding of stimuli should
make it easier to correctly classify new and old stimuli like-
wise, and thereby produce an effect similar to the strength-
based mirror effect (Glanzer & Adams, 1990). This effect
describes the widely observed phenomenon that false alarm
rates are smaller and hit rates are higher for strongly encoded
stimuli compared to weakly encoded stimuli (e.g., Stretch &
Wixted, 1998).

Limitations and open questions

The present work is limited by the fact that our observations
are based on a sample of only 40 word stimuli. This poses the
question of generalizability of our results in regard to the den-
sity asymmetry as well as to the recognition asymmetry.
However, we did not generate the present set for our purposes
but used an existing set introduced by Fazio et al. (1986),
which is frequently used in cognitive research.

As of now, we are confident that the density asymmetry in
this stimulus sample and the following processing differences
are general phenomena observable across many different do-
mains; the density asymmetry has been found for nouns, trait
words, self-generated words, IAPS pictures, and mental rep-
resentations of other people (Alves et al., 2015; Bruckmüller
& Abele, 2013; Koch et al., 2015; Leising et al., 2012; Potter
et al., 2007; Unkelbach et al., 2010; Unkelbach et al., 2008a,
b). However, given the limitation of the stimulus sample used
in the present work it remains unclear to what extent the pres-
ent findings can be generalized to different stimulus sets and
procedures other than the old-new recognition task. Future
research should address possible density-driven recognition
asymmetries in domains other than language such as person
perception, faces, pictures, sounds, tastes, and life events,
using more exhaustive stimulus sets, and alternative recogni-
tion paradigms, such as DRM lists or two alternative forced-
choice tasks (e.g., Smith & Duncan, 2004).

Another open question relates to the different components
of the density asymmetry and their contribution to the

recognition effects reported here. As mentioned earlier, we
argue positive information is less diverse than negative infor-
mation, resulting in a higher density of positive information in
mental representations. Higher density correlates with seman-
tic similarity, associative strength, frequency of co-occur-
rence, and category inclusiveness (Koch et al., 2015), and
may serve as the latent cause for observable valence
asymmetries on these measures. The present experiments
show that density strongly predicts recognition performance
and accounts for valence effects; however, it is not clear which
of the different components of density influences recognition.
As argued earlier, there is good evidence that semantic simi-
larity among stimuli increases false recognition (e.g.,
Montefinese et al., 2014). However, some researchers have
challenged the idea that item noise itself influences recogni-
tion performance (e.g., Dennis & Humphreys, 2001; Maguire,
Humphreys, Dennis, & Lee, 2010). Specifically, it was sug-
gested that participants rely on category labels (i.e., animals
vs. vegetables) that are associated with stimuli as part of the
recognition process (Humphreys, Murray, & Koh, 2014). This
would suggest that it is not the larger semantic similarity
among positive stimuli that causes false recognition but the
higher inclusiveness of positive categories. Likewise, it is pos-
sible that the greater tendency of positive stimuli to co-occur
in the same context creates false recognition (e.g., Lund &
Burgess, 1996). The ways in which word stimuli can be relat-
ed to one another are multifaceted (e.g., Gagné, 2000; see also
Estes & Jones, 2009), and future research should try to disen-
tangle which kind of relatedness (e.g., semantic similarity, co-
occurrence, category inclusiveness) influences recognition
memory. It is possible that multiple processes simultaneously
affect recognition in the same direction and thereby contribute
the apparent valence asymmetry. Such a scenario would be in
line with our conceptualization of the density asymmetry as it
allows for multiple processes to be at work; interitem similar-
ity and thus density may serve as the uniting latent cause for
these multiple processes. As positive information is naturally
less diverse than negative information, positive words are se-
mantically more similar, co-occur more frequently within the
same context, have stronger associative relations, and are di-
vided into fewer categories than negative words (see Koch
et al., 2015). All of these factors might increase false recogni-
tion, but would also relate to stimulus density.

Our results also imply that researchers who are interested in
examining valence effects in cognition have to make an im-
portant decision regarding the stimulus sample. The sample
can either incorporate the naturally occurring density asym-
metry for the sake of external validity (e.g., Brunswik, 1955),
or stimuli can be selected to wipe out this asymmetry in order
to observe Bpure^ effects of valence. Examples for the latter
strategy are studies that use the Deese–Roediger–McDermott
recognition paradigm (e.g., Budson et al., 2006; Roediger &
McDermott, 1995). These studies use lists that typically entail

Mem Cogn (2015) 43:896–909 905



several associated words from specific positive or negative
domains (e.g., sex, man, violate) that converge on a critical
lure (e.g., rape; see Budson et al., 2006). The stimuli are often
matched regarding their attributes, including strength of asso-
ciative relation. In such a preselected stimulus sample we
would not expect to find the typical density asymmetry. In
fact, recent studies have shown that in recognition experi-
ments using these DRM lists negative words elicit more false
recognition than positive words which is contrary to the clas-
sical recognition asymmetry and to the results of the present
experiments (Brainerd, Holliday, Reyna, Yang, & Toglia,
2010; Brainerd, Stein, Silveira, Rohenkohl, & Reyna, 2008).
The authors argue that negative valence enhances the famil-
iarity of the semantic content of critical distractors. Thus, it is
possible that when the naturally occurring density asymmetry
is controlled for, negative valence might increase perceived
familiarity and thereby decrease memory accuracy. This is
contrary to what affect-based accounts and the warm-glow
heuristic would predict (e.g., Monin, 2003; Ohira et al., 1998).

The present findings might explain why in some experi-
ments negative information has a recognition advantage and
in other experiments, that pre-select stimuli to counterbalance
associative relations (e.g., DRM experiments), and thereby
erase the density asymmetry, the reversed is true. However,
as another recent study that carefully controlled for associative
relatedness of new and old stimuli did not find any difference
in false recognition between positive and negative DRM lists,
it is an open question whether affective valence per se influ-
ences recognition (Dehon, Larøi, & Van der Linden, 2010).
Our research shows that controlling for stimulus density is
crucial for any research aiming to examine Bpure^ valence
effects.

Conclusions about valence, affect, and cognition

Valence asymmetries in cognitive processes are commonly
explained to be a result of the affective response of the organ-
ism. Affect-based accounts require the assumption that the
mere confrontation with a stimulus (e.g., the word war) elicits
an affective reaction strong enough to influence its processing.
However, we want to emphasize that humans can process
affectively charged stimuli in a relatively Bcold^ and
nonaffective way. Furthermore, valence asymmetries in cog-
nitive performance might not always be due to the affective
reaction of the organism but instead arise from the natural
structure of the information ecology. One structural character-
istic of evaluative information is that negative information is
more diverse than positive information. Consequently, posi-
tive information has a higher density than negative informa-
tion in people’s mental representation. We suggest density as
an important variable that creates valence asymmetries inde-
pendent of affect.

Finally, we want to point out that there is a large and con-
vincing body of research on affect-induced processing
asymmetries, and that we do not question their general exis-
tence. We do, however, want to call for caution, as positive
and negative information does not only vary in affective po-
tential but also in Bcold^ properties, like density. If these
Bcold^ properties account for Bhot^ effects, it need not impact
the functional outcomes—our memory is still more accurate
for negative than for positive information—but it will substan-
tially alter explanatory models, applications, and
interventions.
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Appendix

Table 5

Table 5 List of 20most positive and 20most negative words that seved
as stimuli (Bargh et al., 1992; Fazio et al., 1986; Klauer & Musch, 1999;
Unkelbach et al., 2008a)

Negative Positive

Stimulus German translation Stimulus German translation

War Krieg Cake Kuchen

Hitler Hitler Kitten Kätzchen

Bombs Bomben Chocolate Schokolade

Alcoholism Alkoholismus Ice Cream Eiscreme

Disease Krankheit Butterfly Schmetterling

Toothache Zahnschmerz Baby Baby

Hate Hass Pizza Pizza

Funeral Beerdigung Food Essen

Virus Virus Hawaii Hawaii

Crime Verbrechen Birthday Geburtstag

Death Tod Movies Kino

Hell Hölle Strawberry Erdbeere

Divorce Scheidung Gift Geschenk

Cancer Krebs Flowers Blumen

Guns Gewehre Party Party

Recession Rezession Music Musik

Garbage Müll Summer Sommer

Litter Abfall Holiday Urlaub

Cockroach Kakerlake Sunshine Sonnenschein

Taxes Steuern Friend Freund
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